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Abstract - -This paper presenis an investigation of the thermal entry-region problem for liquid metal turbulent
flow inside a round pipe. Theeffect of axial conduction istaken into accountin both upstream and downstream
directions. The exact solution is obtained by using the method of separation of variables for parameters,
5 < Pe < 1000 and 0.001 < Pr < 0.02 with Re > 4000. The Prandtl numbers cover the full range of liquid

metals.

Excellent agreement is observed upon comparison of the resulting Nusselt numbers with the available
experimental data in both the entrance and fully developed regions. The solution also indicates that the fully
developed Nusselt number depends only on the Reynolds number at low Peclet numbers. The interpolation

formula

Nu,, =301 Re®833

is found to fit the calculated data well for Pe < 100.

NOMENCLATURE

D, R, diameter and radius of the pipe;

DF, damping factor, equation (8);

1.g, quantities defined in equation (2);

Jer friction factor:

h, heat transfer coefficient ;

k, thermal conductivity;

I,1*, 15, dimensional, dimensionless damped and
undamped mixing lengths, [* = (DF)l;,
¥ = V*liv;

Nu, Nusselt number, hD/k;

Pe, Peclet number, VD/u;

Pr, Pr,, Prandtl and turbulent Prandtl numbers,
Pr=vja, Pr, =g /s;

q, radial heat flow rate;

R X, cylindrical coordinates;

r X, dimensionless cylindrical coordinates,
r=R/Ry, x =4X/Pe D;

Re, Re*, Reynolds number and shear Reynolds
number, Re = VD/v, Re* = V*D/v;

T, Ty, temperature and temperature at X =
—

U, u, dimensional and dimensionless velocity,
u=U/V=u"jul;

ut, dimensionless velocity, U/V*;

v, mean velocity;

V=, shear velocity, V{f/8)*/%;

Y,y,v", defined as Y =R,—R, y=Y/R, and

v = VFY)y

Greek symbols

%, thermal diffusivity ;

8, &, dimensionless total eddy diffusivity in r
and x directions respectively, ¢ = 1 +¢,/x,
= 1+{en) /3
dimensional and dimensionless radial
eddy viscosity, ¥ = g,/v;
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&y (&), radial and axial eddy diffusivity;
X dimensionless temperature,

(T - To)/(q.D/2k};

v, kinematic viscosity;

G, ratio of axial to radial total eddy
diffusivity, ¢,/c.

Subscripts

b, bulk;

c, center of pipe;

m, mean;

w, wall;

o0, fully developed region, x = oo.

INTRODUCTION

WIDESPREAD interest has appeared in the use of liquid
metals as heat transfer media because of their high
boiling points and resistance to thermal de-
composition. Qualitatively, it is also recognized that
the heat transfer coefficients are higher in liquid metals
than any other fluid for a given system and pumping
power. Therefore, liquid metals have been widely used
as a coolant in nuclear reactors.

In spite of the attractions and the potentialities of the
uses of liquid metals in industrial applications, the
mechanism of turbulent heat transfer in liquid metals is
not well understood. In the early literature [1-37 the
turbulent Prandtl number, Pr,, which is the ratio of
eddy viscosity to eddy diffusivity, was taken to be a
constant or unity. Various experiments [4, 5] were
conducted to determine the turbulent Prandtl number
from measured temperature and velocity profiles. It
was generally agreed that Pr, is larger than unity for
liquid metals and is not a constant across the pipe.
Later, Azer and Chao [6] proposed a mechanism of
turbulent heat transfer based on a modification of
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Prandtl’s mixing length hypothesis which assumes that
there is a continuous change of momentum and energy
during the movement of the eddy. Two expressions
giving the turbulent Prandtl number were obtained.
One was for liquid metals and the other for fluids of the
Prandtl number ranging from 0.6 to 15. Computations
of the Nusselt number and the temperature profile in
liquid metals were carried out under the wall condition
of constant heat flux using the deduced expression for
turbulent Prandtl number. Comparison of Nusselt
number with the prediction of Lyon [ 2] was made. The
improvement over Lyon’s result is obvious. According
to their results, the lowest possible Nusselt number is 7.
but the bulk of experimental data [7] at low Peclet
numbers indicate a value considerably less than 7. Azer
and Chao [8] also used the theory to investigate liquid
metal heat transfer in fully developed pipe flow with
constant wall temperature. Recently, Notter and
Sleicher [9] solved the turbulent Graetz. problem
numerically. A new empirical turbulent Prandtl
number expression was proposed and recommended
for use together with values of eddy viscosity described
in literature [ 10] to predict values of eddy diffusivity for
Pr < 1. Ozisik er al. [11-137 applied this model to the
freezing of liquids of low Prandtl number in turbulent
flows. Another model was proposed by Na and Habib
[14] based on a modified form of the mixing length
theory developed by Cebeci [15] for turbulent pipc
flows. The model predicts the fully developed Nusselt
number with Pr = 0.02-14.3 under uniform wall fux
condition and fits the available experimental data well
for a range of the Peclet numbers. Both the eddy
viscosity and eddy diffusivity were given in terms of the
Nikuradse’s [ 16} mixing length and damping factors.
and the turbulent Prandtl number was given by the
ratio of the two. It is interesting to note that the bulk of
experimentally determined Nusselt numbers arc lower
than those predicted by the existing theoretical
analyses, especially in the low Peclet number range [ 6
81

Although axial conduction can be ignored in
turbulent convection for nonmetallic fluids, this might
not always be justified for liquid metals. In fact. the
Peclet number can be assmall as Sin turbulent pipe flow
for liguid metals. A number of prior works have
investigated the effect of axial conduction on laminar
heat transfer [17 207, but few have considered this
effect in the turbulent flow case. In turbulent flow. the
effect was first considered by Schneider [217].
Schneider’s investigation was based on observing that
with small Peclet numbers, say less than 100, axial
conduction is significant. He considered the case of a
liquid metal flowing through a round pipe with uniform
wall temperature. The velocity was assumed to be
uniform throughout the pipe. The inlet temperature
was taken to be uniform (at X = () and the pipe is
sufficiently long so that axial conduction is negligible
before the pipe outlet is reached. Both the
dimensionless axial and radial eddy diffusivity werc
assumed to be equal to unity (¢, = & = 1). Based on the
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assumptions, he concluded that for the purpose of
computing the overall heat transfer rate. axiud
conduction can be neglected when the Peclet number s
larger than 100. Recently, Lee [22 also investigated the
effect of axial conduction on a problem of hquid metal
heat transfer in turbulent pipe flow with uniform wall
temperature. To allow for the effect of upstream
conduction, the fluid temperature wus taken (o be
uniformat X = — « and the pipe wall was adiabatic as
X < 0.Theresultsled to the conclusion that the effect
significant in the thermal entry-region for Pe < 100,
butis negligible in the thermally fullv developed region.
Ignoring the axial conduction was shown to resultin an
error of about 40%, (low) in Nusselt number at a low
Peclet number, say Pe = §.

It is noted that previeous publications have pot given
predictions or data at low Peclet numbers (Pe < [0}
and low Reynolds numbers (Re -2 1071 for turbulent
heat transter. Under the {
conduction effect may be significant v the catrance
region and the influence of boundary sublayers must he

such

conditivns,

taken into account. The purpose of thiy paper = 1o
investigate the turbulent heat transfer 1o the thermad
entry-region, considering the effect of axial conduction
The Peclet numbers considered are loss than 165, A
modified turbulent model taking nto wecount the
damping effect of the wall on the mixing Jength
adopted inthis work to approximate the eddy viscosity.
The laminar sublayer and buller cone are
considered in the fow field. Comparisans between the
theoretical Nusselt numbers and the v
mental data are made in both the entrance and tulls
developed regions

ilsis

Stng experi-

THEORETICAL ANALYSIN

Consider a liquid metal flowing through a round pipe
of infinite length. The velocity is turbulent and fully
developed. and the fluid temperature is taken to be
uniform at X = — . The pipe wall & adiabatic at
X < 0 but heated with a constant wall luxat X > O
The flow is steady, Newtonian and incompressible. The
physical properties are constant. Viscosity dissipation.
free convection and tube wall thermal resistance are all
assumed to be negligible.

After imposing the assumptions and mtroducing the
dimensionless transformations, I = ul”. R « rR,. Pe
= VD, X = x{Pe D/4), ¢ = Ua{ey),roo= Doy

oo s (T = Ty, D7 2k), the energy equation

[ A0 = g 8 + PR Htde PeR T kT )
in which
o == b (derdrye {2

{ = we and

and the associated boundary conditions are
O(-- % .7y =0, oo = O ) cr = 0

Mix, 1icr =0 for x <.

M or=1 for x =0 (3
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where 64 refers to the dimensionless fully developed
temperature profile which includes the effect of axial
conduction.

As in Schneider [21] and Lee [22], the axial eddy
diffusivity is assumed to be equal to the radial eddy
diffusivity, thatis, e, = gor o = 1.Itis noted that a fully
developed flow idealization implies that both
dimensionless velocity profile u, and total eddy
diffusivity ¢, are independent of x. The LHS of the
energy equation (1) is the forced convection term, the
first two terms on the RHS are the radial conduction
term and the last term, (40/Pe?X0%0/0x?), usually
neglected for large Peclet number flows but rather
important for low Peclet number flows, is the so-called
axial conduction term. For liquid metals
(0.001 < Pr < 0.02), the Peclet number can be as small
as 5 in turbulent pipe flow. Therefore, this term is
considered in the work. To solve the energy equations
(1) and (2) with the associated boundary conditions (3),
the functions u, ¢ and ;4 must be determined.

In this work, the von Karman’s three region
logarithmic velocity profile and the friction law are
adopted. They are

ut =y* ifo<y* <5,
ut =50yt —305 if5<y* <30, @
um =25yt +55 ify* =30,
and
1/} = 2.0 log (Re f}%)~0.8 )]
where

y* =V*Ry—R)/v and u™ = U/V*
The dimensionless velocity u then can be taken as
u=u"fuy (6)

where u) is the mean value of the dimensionless
velocity u™ over the cross-sectional area of the flow
through the tube.

The eddy viscosity

et =(I")Y(du*/dy") @]
where
I" =I5 (DF),
lg = V*lfv = (V*Ro/vNI/Ro) = (Re*/2)(I/Ro)
= (Re*/2X0.4y — 0.44y? +0.24y° —0.06y*),
DF = 1—exp(—y*/26) (8)
and the Azer—Chao turbulent Prandtl number [6]
14380 Pe™9-58 exp(— y-2%)

Pr, = 9
T35 RO exp(— 07 )

are used to approximate the eddy diffusivity
e=1+Pre*/Pr,. (10)

The expression of the turbulent Prandtl number was

formulated from Prandtl’s mixing length hypothesis
but modified for a continuous change of momentum
and energy during the movement of the eddy. The
expression is available for liquid metals only. Note that
the present model is different from that of Azer and
Chao[6] because of the use of the damping factor DF. It
is widely held that the conventional mixing length I
overstates the effect of turbulence in the immediate
neighborhood of the wall. The damping factor DF
proposed by van Driest [23] is adopted to account for
the dampingeffect of the wall. The laminar sublayer and
buffer zone ignored in the literature [6] are also
considered in the velocity profile. The influence of the
boundary sublayers on the Nusselt number may be
significant at Re < 10*,

In the thermally fully developed region, one can
obtain the solution by solving the energy equation
without the axial conduction term and the solution is

Org = 2x+2f (l/rE)J ru(dr)*+C (11)
4] 0

where the integration constant C can be determined

from a heat balance taken over the region extending

from x = — oo to an arbitrary axial position in the

thermally fully developed region and the result is

1 1
C= (8/Pe2)f 2¢eor dr—4f ru

0 0
x jr(l/rs) frru(dr)3. (12)
0 0

It is noted that the fully developed temperature profile
04 differs from that when axial conduction is neglected
by the additional term

(8/Pe?) Jl 2¢eor dr.

0

For laminar pipe flow, u = 2(1—r?),e =l and ¢ = 1,
the fully developed temperature profile is
Ocg = 2x+r* —r*/4—7/24 + 8/Pe?. (13)
After finding u, & and 6,4, the functions f(r) and g(r) can
be obtained from equation (2) and the energy equation
(1) may be solved immediately by the method of
separation of variables. For each pair of Pe and Pr, the
first 20 eigenvalues and the corresponding eigen-
functions are determined by using a trial and error
technique and the Runge-Kutta method in both the
regions x < 0and x > 0. Through the use of the Gram—
Schmidt orthonormalization procedure, the two series
expansion coefficients are determined from the
boundary conditions at x = 0. Both the temperature
distribution and the axial temperature gradient must be
equally matched on both sides of x = 0. A detailed
procedure has been described [17]. After determining
the series coefficients the temperature distribution can
be obtained in both regions x < 0 and x > 0, and the
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local bulk temperature is evaluated by

1
0,(x) = 2[ rul(x, rydr. {14
0

The local Nusselt number Nu(x) can be written as

Nu(x) = hDik = 240, —0,). (15)

It is noted that when the Peclet number is large. the
present method is still available but the eigenvalues
scatter in a random pattern and the calculations are
very time consuming. Fortunately, a method used [19]
for the case of no axial conduction is applicable in
present work for Pe > 1000. Under this condition, the
effect of axial conduction is negligible.

RESULTS AND DISCUSSION

Three models of turbulent heat transfer have been
proposed by Azer and Chao [6], Notter and Sleicher
[9], Na and Habib [14]. In this investigation, a
modified form of the Azer—Chao model is adopted. The
parameters taken in this work are Pe = 5,10, 20,40, 60,
80, 100, 300, 500, 700, 1000 and Pr = 0.001,0.004.0.01,
0.02 with Re > 4000.

Figure 1 illustrates the temperature distribution
along the axial position for the case of Pe =5 and
Pr = 0.001. The temperature profile is lower and more
uniform at entrance, then increases along the
longitudinal direction and finally developsinto the fully
developed profile 0. A subsidiary figure for 0—0_ is
also provided in the figure where the subscript ¢ stands
for the center of the pipe. The series expansion
coefficients in both regions x < 0 and x = 0 satisfy
the matching conditions required at x = 0. As can be
observed, the temperature distributions at x = —0
and x = +0 are equally matched (except near the

05 pe=-g ol
- Pr = 0.001 0.2
6-6,
+ 0.0
<000
0.0

F1G. 1. Temperature variations along the flow direction for the
case of Pe = 5 and Pr = 0.001.

wall). This is, in fact, a direct proot of the mathe-
matical correctness of the present solution. It s
noted that at the pipe wall, the radial temperaturc
gradient 15 zero at x <0 and unity at v > 0. Thi
discrepancy in boundary conditions causes a tem-
perature discontinuity near the pipe
position x = +0. The temperature proliles are scen 1e
be strongly affected by the effect of upstream
conduction. For example. al + = +4 the
increases from 0.2312 at the center to (14899 at the wail.
Il the effect of axial conduction i assumed to be
negligible. the temperature at v - [
10]. This assumption should result in asignificant error
in the Nusselt number.

Figures 2 5 show the local Nussclt number
dimensionless axial coordinate » for the case o
Pr = 0.001, 0.004, 0.0t and 0.02 respectively with the
Peclet number as a parameter. It is seen that for cach
pair of Pr and Pe, the value of Nussell numbet
approaches asymptotically to a certain constant as
approaches infinity. This value depends on the profife
of Oy4. For a given Prandtl number. the flow with larger
Peclet number vields greater fully developed Nussel
number. In the thermal entrance-region. increasing ke
Peclet number should decrease the effect of
conduction and the temperature profile tends (o be
more uniform at x = 0. This results in a higher Nusseit
number as x approaches zero it

wall

Vaiue

« U then s soro |

(S

Hence. for u
Prandtl number the Nusselt curves do not cro
other as shown in cach of the four figures. This i
different from that of laminar heat transfer {177, Not
that the dimensionless axial coordinate © which ix
defined in terms of Peclet number ix different from the
real axial position X/D. For example. the position
X/D = 4.6 shown in Fig. 3 1y not a vertical hine b
rather a curve. It is also noted that the contribution o
axial conduction is rather important in the theemal
entrance-region when Pe <0 100. Detailed informution
can be referred to the study by Lee {227 i which the

pipe wall at x =0 was kept at u umiform wall
temperature.
’Ui—_1—r‘1—rrrrrr. T e
0 i
T Pr=0001 i
4
Nu
2
o 107
5
. coe vy Lt
AR R
X
F1G. 2. Nusselt number curves for the case of Pr = (1001
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F1G. 3. Nusselt number curves for the case of Pr = 0.004.
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F1G. 4. Nusselt number curves for the case of Pr = 0.01.

2
10 L B 13 B N B 1 B e 04

[N Pr = 002 7

4 Pe = 1000 e

4 feedetttoned 1 3oppagnd
g2 4« 7.2 2
10 10

I3 2140
o7 2 47y

X

FiG. 5. Nusselt number curves for the case of Pr = 0.02.

HMT 26:3 . ©

To examine the reliability of the present prediction,
the computed Nusselt numbers vs Peclet number
correlation is compared with the existing theoretical
predictions and experimental data. Experimental data
for mercury and lead-bismuth have been given[24,25].
The fiuid bulk temperatures were measured at the inlet
and outlet of the test section and the wall temperature
was measured at eight stations along the tube. Four of
the stations were located at X/D = 4.6, 13.8,23and a
position near the end of the tube whose length to
diameterratiois 73.6. Figure 6 shows the comparison of
Johnson’s data [24, 257 with the present prediction for
various Peclet numbers at X = 4.6D. The Prandtl
number in both experiments was about 0.02. It is
apparent from this figure that the present calculated
Nusselt number is in excellent agreement with the
experimental data. The agreement is also found to be
excellent if comparisons are made at other local
stations. Because of the lack of other theoretical works
on the local Nusselt number in entrance region, the
early predictions of Poppendiek—Palmer and Deissler
[7] are plotted for comparison. The prediction of
Poppendiek and Palmer was based on the assumption
that the eddy diffusivity is negligible when compared
with molecular diffusivity; thus this solution is
independent of Prandtl number and its value is seen to
be too low. Deissler obtained the solution numerically.
To approximate the eddy diffusivity, he proposed a
model based on a modification of Reynolds analogy by
allowingfor heat transferred by conduction to or froma
turbulent particle as it moves radially in the tube. This
result is also low. Note that the Peclet numbers
presented in both works were larger than 100; thus the
contribution of axial conduction is insignificant.

Comparisons of Notter-Sleicher’s prediction [9]
and Johnson’s data [24, 257 with the present results are
shown in Fig. 7 at various dimensionless axial
coordinate x for the case of Pr = 0.02 and Pe = 1000.
An excellent agreement is observed between the
experimental data and the present results. The

LO|I!| T T T \TFTI\] T

L Pr=002
X=46D

—— Present Study
20} ———— Deissler
—-— Poppendiek and Palmer

o Johnson et at.[24], mercury
Johnson et al.{25], 240
tead-bismuth

Nu ¢

Pe

Fi¢. 6. Comparisons of existing experimental data and
theoretical predictions with present study at X = 4.6D.
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4 Present Study )
LI ~ = = -~ Notter and Sleicher [§] .
"
Nu
2k
10t~
7 3 o Johnson et al. [24]. mercury i
L & Johnson et al {25], lead-bismuth
4 Lolbiin Lo itipd IR
B2 o4 Tt 2 6 Ty 2 4 7y

Fii. 7. Comparisons of existing experimental data and
theoretical prediction with present study in thermal entrance
region for the case of Pr = 0.02 with Pe = 1000.

prediction of Notter and Sleicher [9] is in good
agreement with the present prediction in the entrance
region, but is about 14% higher in the thermally fully
developed region. Since the axial conduction is
negligible throughout the pipe at Pe = 1000, the
difference is due to the different model used.

Figure 8 shows the fully developed Nusselt number
vs Peclet number for Pr = 0.02. Predictions and
experimental data by other studies are also indicated
for comparison. The solution of the present study
includes the case of Pe = 2000. Agreement between the
present prediction and the experimental data is
excellent. Comparison is also made with the following

prediction made by Azer and Chao [6]
Nu, = T+0.05Pr25pel 77, (16)

The improvement of the present prediction over

/‘011V§ T T T T

Pr=0.02

- ——— Present Study

~ - -~ Azer and Chao (6]

— - — Notter and Steicher [9]
-— --— Noand Habib {14}

T T

20+

©  Johnson etal [24]. mercury
. Johnson et al. [25], lead-bismuth
|+ Skupinski et al. [26), NaK (Pr=00153) A
v English and Barrett{271, mercury .7 e
Nu g

Fe

Fic. & Comparisons of existing experimental data and
theoretical predictions with present study in thermally fully
developed region.
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equation (16) is obvious. In the thermally fully
developed region, the axial conduction is negligible at
all Peclet numbers. Therefore, this difference is due 1o
the absence of damping effect of wall on the mixing
length in their work. In addition, to obtain a simplified
closed form of fully developed Nusselt number. Azer
and Chao [6] assumed the dimensionless radial heat
flow rate, g/q.,. 10 be r'-7% which is independent of both
the Reynolds number and the Prandtl number. These
errors should be more pronounced at low Reynolds
number, say Re < 10%. Note that uccording to the
present result, a fully developed Nusselt number fess
than 7 atlow Peclet numbers s possible, The prediction
proposed by Notter and Sleicher [97] is seen to be abowt
10% to 15Y%; higher than the present result. This is also
due to the different model used. The results of Na and
Habib [ 14] seem to be in good agreement with those of
the present study in a range of Peclet numbers. but their
model is practical only when Re > 10% and Pr = 0.02.

Figure 9 depicts the fully developed Nusselt number
vs the Reynolds number with the Prandtl number as a
parameter. The dashed lines indicate the variation of
Nusselt number with Peclet number as a parameter. 11
is observed that the solid lines coincide with cach other
as Reynolds number approaches u small value, say
Re = 3000, and the curves with larger Prandd
numbers have larger Nusselt numbers before they
coincide with the other curves. The reason is that for a
given Reynolds number, eddy diffusivity increases as
Prandtl number is increased as can be seen from
equation (10), and thus a larger Nusselt number wiil be
observed. It is noteworthy that for 4 small Reynolds
number say Re = 4000, ¢ is so small that eddy
diffusivity is negligible compared to the molecular
diffusivity for all Prandtl numbers in the range
0.001 < Pr < 0.02 and therefore, the curves coincide in
the low Reynolds number range. When the Reynolds
number is less than 2300, the flow field should be
taminarand the resulting Nusselt number is4.364 {or all
Prandtl numbers. Ata Peclet number below 450, sayv Pe
= 200, increasing the Prandtl number should decreuse
the Reynolds number (since Re = P/ Pr), and make the

10 T T \lII T T T T T
1000 :
: 7
sl :
Num ;
ol
- !
~ !
- Laminar <
ol il Lo tand
‘3 2 4 7. 2 4 7. 2 4 78
10 1o 10 [RES]

Re

FiG. 9. Fully developed number vs Reynolds number with
parameters Pr and Pe.
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decrease in ¢* more pronounced than the increase in
Pr/Pr,. This should cause a decrease in eddy diffusivity
and thus a decrease in the Nusselt number. Therefore,
the curve with Pe = 200 as shown in this figure has a
positive slope. It is noted that the influence of laminar
sublayer and buffer zone is significant at Re < 10000.
At high Peclet number, say Pe = 1000, in both the cases
of Pr=0.001 and 0.02, the influence of boundary
sublayers is insignificant and the eddy viscosity &* is
rather large. It means that the dimensionless total eddy
diffusivity ¢ is much larger than unity and eddy
diffusivity should increase as Prandtlnumber increases.
Therefore, the curve with Pe = 1000 has a negative
slope.

On the basis of the above discussion, there should
exist a critical Peclet number near 450 whose slope is
approximately zero. If the same results are depicted in
Nusselt number vs Peclet number correlation with
Prandtl number as a parameter as shown in Fig. 10, a
crossover near Pe = 450 (but not exactly) would be
observed. The Nusselt number is larger for a larger
Prandtl number when Pe > 450 and the difference
diverges as Peclet number approaches infinity. These
findings are consistent with those reported by the
existing predictions [6,9]. The dashed lines indicate the
variation of Nusselt number with Reynolds number as
aparameter. [tis seen that at low Reynolds number, say
Re = 10000, increasing the Prandtl number increases
the Nusselt number slightly for Pe > 100. Below
Pe = 100, the fully developed Nusselt numbers seem
to depend on Reynolds number only and the follow-
ing interpolation formula

Nu, = 3.01Re%-0833 17n

fits the calculated data well.

The series converges slowly at small Peclet numbers.
In the present investigation, 20 terms are considered in
the computations of the series expansions.

CONCLUSIONS

(1) The dimensionless temperature profile is lower
and more uniform at the entrance, then increases along
the longitudinal direction and finally develops into the

10 7y L

lll!ll[ T T

7 10

Fi1G. 10. Fully developed Nusselt number vs Peclet number
with parameters Pr and Re.
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fully developed profile 6,y which results in a fully
developed Nusselt number.

(2) For agiven Prandtl number, the flow with larger
Peclet number yields larger Nusselt number through-
out 0 < x € 0. This is different from the case of
laminar heat transfer.

(3) In thermally fully developed region, for a Peclet
number below 450, increasing the Prandtl number
should decrease the Nusselt number. The Nusselt
number depends only on the Reynolds number at
Pe < 100. The damping effect of the wall on Nusselt
number is significant and the influence of boundary
sublayers is not negligible at low Reynolds number.

(4) Tt is possible to have a fully developed Nusselt
number less than 7 at low Peclet numbers.
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CONVECTION THERMIQUE D'UN METAL LIQUIDE EN ECOULEMENT TURBULENT
DANS UN TUBE AVEC FLUX UNIFORME EN PAROI

Résumé—On présente I'étude du probléme de I'établissement thermique pour un métal liquide en ¢coulement
turbulent dans un tube rond. L'effet de la conduction axiale est prise en compte dansles directions en amont et
en aval.

La solution exacte est obtenue en utilisant la méthode de séparation des variables pour 5 < Pe <2 1000 et
0,001 < Pr < 0,02avec Re > 4000. Les nombres de Prandt! couvrent le domaine complet des métaux liquides.

Un accord excellent est observé entre les nombres de Nusselt calculés et les données expérimentales a la fois
pour la région d’entrée et pour la zone établie. La solution indique aussi que le nombre de Nusselt en zone
pleinement établie dépend seulement du nombre de Reynolds aux faibles nombres de Péclet. La formule:

Nu, =301 Re0-0832

représente bien les calculs pour Pe < 100,

WARMEUBERGANG VON FLUSSIGEM METALL BEI TURBULENTER ROHRSTROMUNG
UND GLEICHFORMIGER WARMESTROMDICHTE

Zusammenfassung - Diese Arbeit beschreibt eine Untersuchung zum Problem des Wirmelbergangs im
thermischen Einlaufgebiet einer turbulenten Stromung von flassigem Metall in einem Kreisrohr. Dabei wird
der EinfluB der axialen Warmeleitung entgegen der Stromung und in Strémungsrichtung berticksichtigt. Mit
der Methode der Trennung der Variablen wird eine exakte Losung fiir die Parameter Peclet-Zahl (5 < Pe
< 1000)und Prandtl-Zahl (0,001 < Pr < 0,02) bei Re > 4000 erhalten. Die Prandtl-Zahlen decken das ganze
Gebiet der flissigen Metalle ab. Hervorragende Ubereinstimmung erhilt man bei einem Vergleich der
errechneten NuBelt-Zahlen mit den verfiigbaren experimentellen Daten sowohlim Einlaufgebiet als auch fiir
die Gebiete der voll ausgebildeten Strémung. Ferner zeigt die Losung. dall die NufBelt-Zahl im voll
ausgebildetem Gebiet bei niedrigen Peclet-Zahlen nur von der Reynolds-Zahl abhingt. Die
Interpolationsformel Nu,, = 3,01+ Re® %833 gibt die berechneten Daten fiir Pe < 100 gut wieder.

TENJONEPEHOC B XXUJAKUX META/UJIAX IPU UX TYPBYJEHTHOM TEYEHWH
B TPYBAX C OJHOPOAHbIM TTOTOKOM TEMNJIA HA CTEHKE

AnnoTamus — Mcciie0BaHa 3aada O TEMJIOBOM HAYAAbHOM YHAcTKe juis TypOyJeHTHOI O MOTOKa
XHIKOTO MeTanna B kpyrioil TpyOe. [Ipu 7ToM yunThiBaeTcs 3hdekT oceBodt MPOBOJAMMOCTH Kak B
HANPABJICHHH, IPOTHBOIIONIOKHOM TEHEHHIO, TaK ¥ BAOJL Hero. TouHOE pEilleHHE MOJIYHEHO METOAOM
pa3jeficHus TEPEMEHHBIX JLIs mnapameTpos 5 < Pe < 1000 u 0,001 < Pr<0,02 npu Re > 4000.
3Hauenus uncia [IPaHAT A OXBATHIBAIOT BECH [HAINA30H KHIKMX METALIOB.

[TokaszaHo XOpOLIEe COOTBETCTBHE NOJIYHEHHBIX 3HAaYeHMHA YHCia HyccenbTa © MMEIOIMMHCS IKCIE-
PUMEHTATbHBIMH JAHHBIMHM KaK Ha BXO/E. TAK H B 0GJIACTH [10JHOCTHIO PA3BUTOIO TEUCHUS. Petnenye
TaKKe nokKaseiaeT, 4yTo uucio Hyccenbrta TS MONHOCTBIO PA3BMTOIO Y4acTKa 3aBHCHT TOTBKO 01
ymcia PeliHOMBACA IPH Ma TbiX 3HadeHHsax uucia [Mekie. Hafineno, 4TO HHTEPNONAUNOHHOE ypaBHEHHE

Nu, = 3,01 Re0-0833

XOPOLIIO COIJIACYETCs ¢ PACYETHBIMHU JaHHBIMHU NPH Pe < 100.



