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Abstract This paper presents an investigation ofthe thermal entry-region problemforliquid metal turbulent 
flow inside around pipe. The effect ofaxial conduction is taken into account in both upstream and downstream 
directions. The exact solution is obtained by using the method of separation of variables for parameters, 
5 < Pe < 1000 and 0.001 < Pr < 0.02 with Re > 4WO. The Prandtl numbers cover the full range of liquid 
metals. 

Excellent agreement is observed upon comparison of the resulting Nusselt numbers with the available 
experimental data in both the entrance and fully developed regions. The solution also indicates that the fully 
developed Nusselt number depends only on the Reynolds number at low Peclet numbers. The interpolation 
formula 

Nu cc = 3.01 Re0,0*33 

is found to tit the calculated data well for Fe < 100. 

Nli, 
PC 
Pr, Pr,, 

Y? 
R, X, 
r, 7 

Re, Re*, 

T, To, 

diameter and radius of the pipe ; 
damping factor, equation (8) ; 
quantities defined in equation (2); 
friction factor ; 
heat transfer coeilicient ; 
thermal conductivity; 
dimensional, dimensionless damped and 
undamped mixing lengths, li = (DF)l,f, 
I,+ = V*l/v; 
Nusselt number, hD/k; 
Peclet number, VD/a; 
Prandtl and turbulent Prandtl numbers, 
Pr = v/a, Pr, = c&k,; 
radial heat Aow rate ; 
cylindrical coordinates ; 
dimensionless cyiindrical coordinates, 
Y = RjR,, x = W/Pe D; 
Reynolds number and shear Reynolds 
number, Re = VDjv, Re* = V*DJv; 
temperature and temperature at X = 
- rx. ; 
dimensional and dimensionless velocity, 
u = U/V = u+/u;; 
dimensionless velocity, U/V* ; 
mean velocity; 
shear velocity, V(fJS)‘j2 ; 
defined as Y = R,-- R, y = Y/R,, and 

\I+= ,. v* y/v 

Greek symbols 
r, thermal diffusivity; 
6, F,, dimensionless total eddy diffusivity in r 

and x directions respectively, E = 1 f E,,/x, 
F, = 1 +(&/a ; 

+ c,, E , dimensional and dimensionless radial 
eddy viscosity, E+ = E,/v; 

&hs (%)xr radial and axial eddy di~usivity; 
8% dimensionless temperature, 

(T - ~)/(q~~/2k) ; 
V, kinematic viscosity: 

0, ratio of axial to radial total eddy 
diffusivity, E,/E. 

Subscripts 

b, bulk ; 
C, center of pipe ; 
m, mean ; 
W, wall ; 
“3, fully developed region, x = co. 

INTRODLiCTION 

WIDESPREAD interest has appeared in the use of liquid 
metals as heat transfer media because of their high 
boiling points and resistance to thermal de- 
composition. Qualitatively, it is also recognized that 
the heat transfer coefficients are higher in liquid metals 
than any other fluid for a given system and pumping 
power. Therefore, liquid metals have been widely used 
as a coolant in nuclear reactors. 

In spite of the attractions and the potentialities of the 
uses of liquid metals in industrial applications, the 
mechanism of turbulent heat transfer in liquid metals is 
not well understood. In the early literature [l-3] the 
turbulent Prandtl number, Pr,, which is the ratio of 
eddy viscosity to eddy diffusivity, was taken to be a 
constant or unity. Various experiments [4, 51 were 
conducted to determine the turbulent Prandtl number 
from measured temperature and velocity profiles. It 
was generally agreed that Pr, is larger than unity for 
liquid metals and is not a constant across the pipe. 
Later, Azer and Chao f6] proposed a mechanism of 
turbulent heat transfer based on a modification of 
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Prandtl’s mjxing Iength hypothesis which assumes that 

there is a continuous change of momentum and energy 
during the movement of the eddy. Two expressions 
giving the turbulent Prandtl number were obtained, 

One was for liquid metals and the other for fluids ofthc 
Prandtl number ranging from 0.6 to t 5. (~(~rnput~~tioI~s 
of the Nusselt number and the temperature profile in 
liquid metals were carried out under the wall condition 

of constant heat fux using the deduced expression fog 
turbule~lt Prandtl number. Comparison of Nussclt 
number with the prediction of Lyon 121 was made. The 
improvement over Lyon’s result is obvious. According 

to their results, thelowest possible Nussclt number is 7. 
but the bulk of experimental data [7] at low Pcclct 
numbers indicate a salute considerably less than 7 4/cr 

and Chao [8] also used the theory to investigate liquid 
metal heat transfer in fully developed pipe Ilow with 
constant wall temperature. RecentI), Nottcr and 
Sleicher [9] solved the turbulent (iraetz problem 
numerically. A new empirical t~~rbi~lc~~t Prantlti 
number expression was proposed and recommended 
for use together with values ofeddy viscosity dcscrihcd 
in literature [IO] to predict values ofcddy diffusivity l’or 
Pr < 1. Ozisik (11 ~rl. Cl 1 131 applied this model to the 
freezing of liquids of low Prandtl number in turl~~llent 
flows. Another model was proposed by Na and tfabih 
[14] based on a modified form of the mixing length 
theory developed by Cehrci [IS] for turbulent pipe 
flows. The model predicts the fully developed Nusselt 
number with Pr = 0.01 14.3 under uniform wall flux 
condition and fits the available experimental data well 
for a range of the Peclet numbers. Both the eddy 
viscosity and eddy diffusivity were given in term> of the 
Nikuradse’s [ 16) mixing length and damping factor>. 
and the turbulent Prandtl number was given h\, the 
ratio ofthe two. It is interesting to note that the hulk ilf 
experimentally determined Nusselt numbers arc lo\+er 
than those predicted by the existing theoretical 
analyses, especially in the low Peclet number rangt- [ 0 
81. 

Although axial conduction can be ignored in 

turbulent convection for nonmetallic fluids, this might 
not always be justified for liquid metals. In fact. the 
Pectet number can be as small as 5 in turbulent pipe Ilo\% 
for liquid metals. A number of prior works iiave 
investigated the effect of axial conduction on laminar 
heat transfer [I7 201, but few have considered this 
effect in the turbulent flow ~&se. In turbulent tlo\r. the 
effect was first considered by Schneider i 213. 
Schneider’s investigation was based on observing that 
with small Peclet numbers, say less thall 100. axial 
conduction is significant. He considered tbe case of a 
liquid metal flowing through a round pipe with uniform 
wall temperature. The velocity was assumed to bc 
uniform through~~ut the pipe. The inlet tc~ip~r~~tLire 
was taken to be uniform (at X =- 0) and the pipe is 
sufficiently long so that axial conduction is negligible 
before the pipe outlet is reached. Both the 
dimensionless axial and radial eddy diffusivity were 
assumed to be equal to unity (c, = i: := I). Based on the 



Liquid metal heat transfer in turbulent pipe flow 351 

where Qfd refers to the dimensionless fully developed 
temperature profile which includes the effect of axial 

conduction. 
As in Schneider [21] and Lee [22], the axial eddy 

diffusivity is assumed to be equal to the radial eddy 
diffusivity, that is, E, = E or (r = 1. It is noted that a fully 
developed flow idealization implies that both 
dimensionless velocity profile u, and total eddy 
diffusivity E, are independent of x. The LHS of the 
energy equation (1) is the forced convection term, the 
first two terms on the RHS are the radial conduction 
term and the last term, (40/Pe2)(a2f?/&2), usually 
neglected for large Peclet number flows but rather 
important for low Peclet number flows, is the so-called 
axial conduction term. For liquid metals 
(0.001 < Pr Q 0.02), the Peclet number can be as small 
as 5 in turbulent pipe flow. Therefore, this term is 

considered in the work. To solve the energy equations 
(1) and (2) with the associated boundary conditions (3), 
the functions u, E and Or, must be determined. 

In this work, the von Karman’s three region 
logarithmic velocity profile and the friction law are 
adopted. They are 

u+ = y+ ifO<y+ <5, 

U+ =5.0lny+-3.05 if5<y+<30, (4) 

u+ = 2.5 In y+ + 5.5 if y+ > 30, 

and 

where 

l/f,“’ = 2.0 log (Ref,“‘)-0.8 (5) 

y+ = V*(R,-R)/v and u+ = U/V*. 

The dimensionless velocity u then can be taken as 

u = Ll+/u; (6) 

where uz is the mean value of the dimensionless 
velocity u + over the cross-sectional area of the flow 
through the tube. 

The eddy viscosity 

E+ = (1+)‘(du+/dy+) (7) 

where 

1: = I/*1/v = (V*R,/v)(I/R,) = (Re*/2)(1/R,) 

= (Re*/2)(0.4y - 0.44~~ + 0.24~~ - 0.06y4), 

DF = 1 -exp( -y+/26) (8) 

and the Azer-Chao turbulent Prandtl number [6] 

Pr 

’ 
= 1+380Pe-0.58 exp(-y”.25) 

1 + 135 Re-0.45 exp(-y0,25) (9) 

are used to approximate the eddy diffusivity 

e = l+Pre+/Pr,. (10) 

The expression of the turbulent Prandtl number was 

formulated from Prandtl’s mixing length hypothesis 
but modified for a continuous change of momentum 

and energy during the movement of the eddy. The 
expression is available for liquid metals only. Note that 
the present model is different from that of Azer and 
Chao[6] becauseoftheuseofthedampingfactor DF. It 
is widely held that the conventional mixing length 1: 
overstates the effect of turbulence in the immediate 
neighborhood of the wall. The damping factor DF 

proposed by van Driest [23] is adopted to account for 
the damping effect ofthe wall. The laminar sublayer and 
buffer zone ignored in the literature [6] are also 
considered in the velocity profile. The influence of the 

boundary sublayers on the Nusselt number may be 
significant at Re < 104. 

In the thermally fully developed region, one can 

obtain the solution by solving the energy equation 

without the axial conduction term and the solution is 

Qrd = 2x+2 ‘(l/r.s) 
s s 

I 
ru(dr)’ + C (11) 

0 0 

where the integration constant C can be determined 
from a heat balance taken over the region extending 
from x = -cc to an arbitrary axial position in the 
thermally fully developed region and the result is 

x ‘(l/a) ‘ru(dr)3. (12) 
s s 0 0 

It is noted that the fully developed temperature profile 
0,, differs from that when axial conduction is neglected 
by the additional term 

(8/Pe*) 
s 

1 
2tsr dr. 

0 

For laminar pipe flow, u = 2(1-r’), E = 1 and c = 1, 

the fully developed temperature profile is 

8,, = 2x + r2 - r4/4 - 7124 + 8/Pe2. (13) 

After finding u, E and Qr,, the functionsf(r) and g(r) can 
be obtained from equation (2) and the energy equation 

(1) may be solved immediately by the method of 
separation of variables. For each pair of Pe and Pr, the 
first 20 eigenvalues and the corresponding eigen- 
functions are determined bjr using a trial and error 

technique and the Runge-Kutta method in both the 
regions x < 0 and x > 0. Through the use of the Gram- 
Schmidt orthonormalization procedure, the two series 
expansion coefficients are determined from the 
boundary conditions at x = 0. Both the temperature 
distribution and the axial temperature gradient must be 
equally matched on both sides of x = 0. A detailed 
procedure has been described [17]. After determining 
the series coefficients the temperature distribution can 
be obtained in both regions x < 0 and x > 0, and the 



local bulk temperature is evaluated by 

The local Nusselt number Nu(x) can be written as 

/Vu(x) = hD,k = 2/(0, ~~0,). (151 

It is noted that when the Peclet number is large. the 
present method is still available but the eigenvalues 
scatter in a random pattern and the calculations are 

very time consuming. Fortunately. a method used [I 91 
for the case of no axial conduction is applicable in 
present work for Pr > 1000. Under this condition, the 

effect of axial conduction is negligible. 

RESULTS AND DISCMSIOK 

Three models of turbulent heat transfer have been 

proposed by Azer and Chao [6]$ Notter and Sleicher 
[9], Na and Habib [14]. In this investigation. a 
modified form of the Azer-Chao model is adopted. The 
parameters taken in this work are PC> -z 5, 10,20,40.60, 
80, 100,300,500,700, IO00 and Pr = 0.001,0.004.0.01, 

0.02 with Re > 4000. 

Figure 1 illustrates the temperature distribution 
along the axial position for the case of Pr = 5 and 
Pr = 0.001. The temperature profile is lower and more 
uniform at entrance, then increases along the 
longitudinal direction and finally develops into the fully 

developed profile O,,. A subsidiary figure for i)-(I)c is 
also provided in the figure where the subscript c stands 

for the center of the pipe. The series expansion 
coefficients in both regions I < 0 and .Y 3 0 satisfy 
the matching conditions required at Y = 0. As can be 
observed, the temperature distributions at .Y = ---0 
and x = +0 are equally matched (except near the 

FIG. I. Temperature variations along the Aow direction for the 
case of Pe = 5 and Pr = 0.001. FIG. 2. Nusselt number curves for the c&e <)f I’r ~!llOi 
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Pr : 0.004 

FIG. 3. Nusselt number curves for the case of Pr = 0.004. 
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FIG. 4. Nusselt number curves for the case of Pr = 0.01. 
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FIG. 5. Nussdt number curves for the case of Pr = 0.02. 

To examine the reliability of the present prediction, 
the computed Nusselt numbers vs Peclet number 
correlation is compared with the existing theoretical 
predictions and experimental data. Experimental data 
for mercury and lead-bismuth have been given [24,25]. 
The fluid bulk temperatures were measured at the inlet 
and outlet of the test section and the wall temperature 
was measured at eight stations along the tube. Four of 
the stations were located at X/D = 4.6, 13.8,23 and a 
position near the end of the tube. whose length to 
diameter ratio is 73.6. Figure 6shows the comparison of 
Johnson’s data [24,25] with the present prediction for 
various Peciet numbers at X = 4.60. The Prandtt 
number in both experiments was about 0.02. It is 
apparent from this figure that the present calculated 
Nusselt number is in excellent agreement with the 
experimental data. The agreement is also found to be 
excellent if comparisons are made at other local 
stations. Because of the lack of other theoretical works 
on the local Nusselt number in entrance region, the 
early predictions of Pop~ndiek-Palmer and Deissler 
[7] are plotted for comparison. The prediction of 
Poppendiek and Palmer was based on the assumption 
that the eddy diffusivity is negligible when compared 
with molecular diffusivity; thus this solution is 
independent of Prandtl number and its value is seen to 
be too low. Deissler obtained the solution numerically. 
To approximate the eddy diffusivity, he proposed a 
model based on a modification of Reynolds analogy by 
allowingfor heat transferred by conduction to or from a 
turbulent particle as it moves radially in the tube. This 
result is also low. Note that the Peclet numbers 
presented in both works were larger than 100; thus the 
cont~bution of axial conduction is insigni~cant. 

Comparisons of Notter-Sleicher’s prediction [9] 
and Johnson’s data [24,25] with the present results are 
shown in Fig. 7 at various dimensionless axial 
coordinate x for the case of Pr = 0.02 and Pe = 1000. 

An excellent agreement is observed between the 
experimental data and the present results. The 

40 ,,/ I I I I Ill,, I 

Pr = 0.02 
X = 4.6 D 

- Present Study 

---- Deissler 

--- Poppendiek and ?almer 

Johnson et ai 1261, mercury 

Johnson et a1.[25:, 
lead-bismuth 

0 

4’ll’ ‘1 ’ /II1111 1 

7 lb 2 4 7 Id 2 

Pe 

FIG. 6. comparisons of existing expe~ment~ data and 
theoretical predictions with present study at X = 4.60. 
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Y 

FIG. 7. Comparisons of existing experimental data and 
theoretical prediction with present study in therma entrance 

region for the case of Pv = 0.02 with Pe = 1000. 

prediction of Notter and Sleicher [S] is in good 
agreement with the present prediction in the entrance 
region, but is about 147,; higher in the thermally fully 
developed region. Since the axial conduction is 
negligible throughout the pipe at Pe = 1000, the 
difference is due to the different model used. 

Figure 8 shows the fully developed Nusselt number 
vs Peclet number for Pr = 0.02. Predictions and 
experimental data by other studies are also indicated 
for comparison. The solution of the present study 

includes the case of Pe = 2000. Agreement between the 
present prediction and the experimental data is 
excellent. Comparison is also made with the following 
prediction made by Aver and Chao [6] 

‘VU * = 7 $ 0.05Pr”.z”Pr”.77. (16) 

The improvement of the present prediction over 

.Iohnson et cl 1251, wad-bismuth 

Skupwki et aI [26!, NaK(Pr:001531 

Nu, 
ingiish and Barrett !271, mercury 

Pe 

FIG. 8. Compa~s~ns of existing ex~rimenta~ data and 
theoretical predictions with present study in thermally fully 

developed region. 

equation (16) is obvious. In the thermally fuil~ 

developed region, the axial c~?nducti~)n is negligible at 
all Peclet numbers. Therefore, this difference is due to 
the absence of damping effect of wall on the rnlxing 
length in their work. In addition, to obtain a simplified 
closed form of fully developed Nusselr number. j\zr 
and Chao [6] assumed the dimensionless radial he;ti 
flow rate, y/y,. to be ri.75 which is i~~depe~ldcnt ofboth 
the Reynolds number and the Prandtl numhcr. Then 
errors should be more pronounced at IWV Rcynold\ 
number, say Re < 104. Note that ;lccording to lhc 
present result, a fully developed Nusseit number IW 

than 7 at low Peclet numbers is possihlc. The pretfic:Gcin 
proposed by Notter and Sleichcr [!I‘] is seen to he :Lb~>uI 
lo”;, to 1 Sy..<, higher than the present result. This I\ a/so 

due to the different mode1 used. The results ol‘ !%;I ;tnti 
Habib 1141 seem to be in good agreement with those :)I 
the present study in a range of Peclet numbers. but 01~1 
model is practical only when Kc :: iO-i and I’/. ., o.c~? 

Figure 9 depicts the fully developed niusselt 11urt3h1:1 

vs the Reynolds number with the Prandtl number ;,t ;i 
parameter. The dashed lines indlcatc thz vartatron ,I! 
Nusselt number with Peclet number a’r a parametcrr lr 
is observed that the solid lines coincide with each <lthcf 
as Reynolds number approaches ;t ~m:~ll vatuc. GLJ. 
Re = 3000, and the curves with largcer Pr;:ndt! 
numbers have larger Nusselt nurnhrlrs before UK? 
coincide with the other curves. The reason is that ittr .i 
given Reynolds number. eddy diffusi\ ity increast?, .IS 
Prandtl number is increased as cim hc seen Ir~::n 
equation (lo), and thus a larger Nusxzlt number M ri! ht: 
observed. It is noteworthy that for a QX;~II Reynold\ 
number say Rc = 4000. i: IS \;i, snail that cd& 

diffusivily is negligible compared to thi: molccu!;u 
diffusivity for all Prandtl numbers in tft* I tng~t 
0.001 $ Pr < 0.02 and therefore. tht:cur\ex coincid? in 
the low Reynolds number range. When the RcyncUs 
number is less than 2300, the flow iietd should hc 
laminarandtheresulting~usselt number isl.i64i;)r;lii 

Prandtl numbers. At a Peclct number below I5Q ~1 L f’, 
= 200, increasing the Prandtl number bhl>uld decre:t\c 
the Reynolds number (since Rc - /"e Or), and makt: the 

8 j-- ,\ .I ,,; 

Re 

FIG. 9. Fully developed number vs Reynolds number \%itll 
parameters PI and Pe. 
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decrease in E+ more pronounced than the increase in 
Pull+,. This should cause a decrease in eddy diffusivity 

and thus a decrease in the Nusselt number. Therefore, 
the curve with Pe = 200 as shown in this figure has a 

positive slope. It is noted that the influence of laminar 
sublayer and buffer zone is significant at Re < 10 000. 

At high Peclet number, say Pe = 1000, in both the cases 
of Pr = 0.001 and 0.02, the influence of boundary 
sublayers is insignificant and the eddy viscosity E’ is 
rather large. It means that the dimensionless total eddy 
diffusivity E is much larger than unity and eddy 
diffusivity should increase as Prandtl number increases. 
Therefore, the curve with Pe = 1000 has a negative 

slope. 
On the basis of the above discussion, there should 

exist a critical Peclet number near 450 whose slope is 
approximately zero. If the same results are depicted in 

Nusselt number vs Peclet number correlation with 
Prandtl number as a parameter as shown in Fig. 10, a 
crossover near Pe = 450 (but not exactly) would be 
observed. The Nusselt number is larger for a larger 
Prandtl number when Pe > 450 and the difference 
diverges as Peclet number approaches infinity. These 
findings are consistent with those reported by the 
existing predictions [6,9]. The dashed lines indicate the 
variation of Nusselt number with Reynolds number as 

a parameter. It is seen that at low Reynolds number, say 
Re = 10 000, increasing the Prandtl number increases 

the Nusselt number slightly for Pe > 100. Below 
Pe = 100, the fully developed Nusselt numbers seem 
to depend on Reynolds number only and the follow- 
ing interpolation formula 

Nu m = 3.01 Re0.0833 (17) 

fits the calculated data well. 

The series converges slowly at small Peclet numbers. 
In the present investigation, 20 terms are considered in 
the computations of the series expansions. 

CONCLUSIONS 

(1) The dimensionless temperature profile is lower 
and more uniform at the entrance, then increases along 
the longitudinal direction and finally develops into the 

‘Ot’ 

Nuco 

FIG. 10. Fully developed Nusselt number vs Peclet number 
with parameters Pr and Re. 

fully developed profile &, which results in a fully 

developed Nusselt number. 
(2) For a given Prandtl number, the flow with larger 

Peclet number yields larger Nusselt number through- 
out 0 < x < co. This is different from the case of 
laminar heat transfer. 

(3) In thermally fully developed region, for a Peclet 

number below 450, increasing the Prandtl number 
should decrease the Nusselt number. The Nusselt 
number depends only on the Reynolds number at 
Pe < 100. The damping effect of the wall on Nusselt 
number is significant and the influence of boundary 
sublayers is not negligible at low Reynolds number. 

(4) It is possible to have a fully developed Nusselt 

number less than 7 at low Peclet numbers. 
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CONVECTION THERMIQUE D’UN METAL LIQUIDh EN ECOULEMENT TI:RBLjLEN’l 
DANS LJN TUBE AVEC FLUX UNIFORMB EN PAR01 

R&um~~~On prtsente l’ktudedu problZmede I’ttablissement thermique pour un metal liquidcen ?coulrmcnt 
turbulent dans un tube rond. L’effet de la conduction axiale est prise en compte dans les directions en amont ct 
en aval. 

La solution exacte est obtenue en utilisant la mCthode de skparatlon des variables pour 5 “I /‘c, .: 1000 et 
0,001 < Pr < 0,02 avec Rr > 4000. Les nombres de Prandtl couvrent ledomainecomplet des mCtaux liquideh, 

Un accord excellent est observi7 entre les nombres de Nusselt calculCs et les donntes exptrimentales li la fois 
pour la rigion d’entrke et pour la zone etablie. La solution indique aussi que le nombre de Nusselt en lone 
pleinement ktablie dCpend seulement du nombre de Reynolds aux faibles nombres de P&let. I .a formulc: 

\‘I‘ = j,() I R<J”.“~ ” 

reprtsente bien les calculs pour 1’~ c I00 

Wi%RMEi?BERGANG VON FLOSSIGEM METALL BE1 TURBULENTER ROHRSTR(jMI’NG 
UND GLEICHFCiRMIGER WiiRMESTROMDlCHTE 

Zusammenfassung Diese Arbeit beschreibt tine Untersuchung lum Problem de\ Warrnetibergangs rm 
thermischen Einlaufgebiet einer turbulenten Striimung von tliissigem Metall in einem Krelsrohr. L)abe~ wird 
der EinfluD der axialen Warmeleitung entgegen der Striimung und in Strb;mungsrichtung beriicksichtigt. Mit 
der Methode der Trennung der Variablen wird eine exakte L(isung fiir die Parameter Peclet-Zahl (5 .-c PI, 
< 1000) und Prandtl-Zahl(O,OOi < Pr < 0,02) bei Rc > 4000 erhalten. Die Prandtl-Zahlen deckzn dns ganre 
Gebiet der fliissigen Metalle ab. Hervorragende iibereinstimmung erhalt man bei einem Vergleich der 
errechneten NuRelt-Zahlen mit den verfiigbaren experimentellen Daten sowohl im Einlaufgebiet als such fiir 
die Gebiete der voll ausgebildeten StrKmung. Ferner zeig( die Liisung. da0 die Nulielt-Zahl im \oll 
ausgebildetem Gebiet bei niedrigen Peclet-Zahlen nur van der Reynold\-Zahl :ihh%ngt. Die 

Interpolationsformel NLI, = 3,Ol . RP”.‘~‘~ giht die berechnetcn Daten fiir PC, < 100 put bbieder. 

TEHJlOnEPEHOC B -IKMAKMX METAJIJIAX HPM MX TYPGYJIEHTHOM TEqEHMM 
B TPY6AX C OflHOPOflHbIM HOTOKOM TEIIJIA HA CTEHKF 

AHHoTaun~ ~~ Mcc,~e;losaHa ‘SaLlava o ren~loao~ Hal(a;lbnoM yracl~e !IJI~~ ryp6y:ien mot 0 1101 oLia 

mmKor0 Mera:ma B ~pyrnofi Tpy6e. IlpH m0M yrri*brsaeTCa 3@eKT 0ceBoii nposo,TnMocrM KaK H 
Hanpamlenus, ~~OTHBO~IOJIOX(HOM PeqeHmo, T~K M B~OJIL Her-o. Toqrioe pemeHMe no.lyt!eno ~frlozo\< 
pa3neneHxn nepeMennb,x u_-IR napaMeTpos 5 < Pf, i 1000 11 0.001 I Pr 5 0,02 npll Her b 4000 

3naqeHMfl qHc.la npann-r.zn oxBaTbIaam07 *ech 3Mana30ti mHfiKMx MeranJIoa. 
floKasaHo xopomee COO~B~XTBA~ noJ,yqeHnbrx 3HaqeHHA gNcj!a HyccenbTa c MMemtu‘~~~cs ~KCIII‘- 

pHMeHTa.VbHb,M&, ,laHHb,MM KaK Ha BxOile. TaK U B 06naCTM IIOJIHOCTbK) pa3BMToIo 1e'leHHR. PWIeHMf 

TaKme nOKa361Bae7, ~0 qHcz0 HyCCeJIbTa lUtR nOJHOCTbw palBMTOr0 y'iaCTKa 3aBMCHT IO:IbKO 01 

4MWa PefiHOJbJCa npu i-da.lblx 3Havemsnxwcna neK.le. Hadneno. Y-r0 WnTepnonfluIlonnoe ypa”nenRe 

Yu, = 3,Ol /&@” ‘1 

xopouro CornacyeTCn c paCqeTHblMH ,!iaHHblMM rlpH PC, < 100. 


